Salud Mental

FOXP2 and language alterations in psychiatric pathology

##plugins.themes.bootstrap3.article.main##

Xochitl Helga Castro Martínez
María Dolores Moltó Ruiz
Mirna Edith Morales Marin
Julio César Flores Lázaro
Javier González Fernández
Nora Andrea Gutiérrez Najera
Daniel Eduardo Alvarez Amado
José Humberto Nicolini Sánchez

Abstract

Background. From the first reports of the linguist Noam Chomsky it has become clear that the development of language has an important genetic component. Several reports in families have shown the relationship between language disorders and genetic polymorphisms. The FOXP2 gene has been a fundamental piece for the understanding of language development. This gene codes for a transcription factor containing a forkhead domain of DNA binding and participates in the regulation of the expression of a large number of genes involved in the embryonic development of fundamental neuronal structures needed for the development of speech and language.

Objective. To present an updated view of the relationship between FOXP2 and language alterations in psychiatric pathology.

Method. Narrative review of information reported in databases on the recent advances supporting genetic participation in language disorders of psychiatric illness.

Results. Update of content related to FOXP2 and its participation in language alterations in psychiatric diseases.

Discussion and conclusion. Advances in the genetic study of language disorders in psychiatric pathology open up new avenues of investigation that allow us to explore how language emerged and how it evolved, as well as to carry out comparative studies on the structure and functioning of genes to approach the understanding of this complex characteristic that makes us human.
Keywords:
FOXP2, language alterations, psychiatric pathology

Downloads

Download data is not yet available.

References

Andres, M., Finocchiaro, C., Buiatti, M., & Piazza, M. (2015). Contribution of motor representations to action verb processing. Cognition, 134, 174-184. doi: 10.1016/j.cognition.2014.10.004

Anney, R. J. L. (2013). Chapter 2.3 Common genetic variants in autism spectrum disorders. In The Neuroscience of Autism Spectrum Disorders (pp. 155-167). doi: 10.1016/b978-0-12-391924-3.00010-7

Ardila, A., Bernal, B., & Rosselli, M. (2016). How localized are language brain areas? A review of brodmann areas involvement in oral language. Archives of Clinical Neuropsychology, 31(1), 112-122. doi: 10.1093/arclin/acv081

Atkinson, E. G., Audesse, A. J., Palacios, J. A., Bobo, D. M., Webb, A. E., Ramachandran, S., & Henn, B. M. (2018). No evidence for recent selection at FOXP2 among diverse human populations. Cell, 174(6), 1424-1435. doi: 10.1016/j.cell.2018.06.048

Badcock, N. A., Bishop, D. V., Hardiman, M. J., Barry, J. G., & Watkins, K. E. (2012). Co-localisation of abnormal brain structure and function in specific language impairment. Brain and Language, 120(3), 310-320. doi: 10.1016/j.bandl.2011.10.006

Barber, A. D., Sarpal, D. K., John, M., Fales, C. L., Mostofsky, S. H., Malhotra, A. K., ... Lencz, T. (2019). Age-normative pathways of striatal connectivity related to clinical symptoms in the general population. Biological Psychiatry, 85(11), 966-976. doi: 10.1016/j.biopsych.2019.01.024

Barragán, P. E., & Lozano, S. S. (2011). Identificación temprana de trastornos del lenguaje. Revista Médica Clínica Las Condes, 22(2), 227-232. doi: 10.1016/s0716-8640(11)70417-5

Becker, M., Devanna, P., Fisher, S. E., & Vernes, S. C. (2018). Mapping of human FOXP2 enhancers reveals complex regulation. Frontiers in Molecular Neuroscience, 11, 47. doi: 10.3389/fnmol.2018.00047

Beilock, S. L., Lyons, I. M., Mattarella-Micke, A., Nusbaum, H. C., & Small, S. L. (2008). Sports experience changes the neural processing of action language. Proceedings of the National Academy of Sciences, 105(36), 13269-13273. doi: 10.1073/pnas.0803424105

Bishop, D. V. (2003). Genetic and environmental risks for specific language impairment in children. International Journal of Pediatric Otorhinolaryngology, 67(Suppl 1), S143-S157. doi: 10.1016/j.ijporl.2003.08.014

Bowers, J. M., & Konopka, G. (2012). The role of the FOXP family of transcription factors in ASD. Disease Markers, 33(5), 251-260. doi: 10.3233/DMA-2012-0919

Bruce, B., Thernlund, G., & Nettelbladt, U. (2006). ADHD and language impairment. European Child & Adolescent Psychiatry, 15(1), 52-60. doi: 10.1007/s00787-006-0508-9

Bruce, H. A., & Margolis, R. L. (2002). FOXP2: Novel exons, splice variants, and CAG repeat length stability. Human Genetics, 111(2), 136-144. doi: 10.1007/s00439-002-0768-5

Brugada, R., Campuzano, O., Sarquella-Brugada, G., Brugada, P., Brugada, J., & Hong, K. (2005). Brugada Syndrome. In Adam M. P., Ardinger H. H., Pagon R. A., et al., (Eds.). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2019. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20301690

Chan, K. M., & Fugard, A. J. (2018). Assessing speech, language and communication difficulties in children referred for ADHD: A qualitative evaluation of a UK child and adolescent mental health service. Clinical Child Psychology and Psychiatry, 23(3), 442-456. doi: 10.1177/1359104517753510

Cohen, N. J., Davine, M., Horodezky, N., Lipsett, L., & Isaacson, L. (1993). Unsuspected language impairment in psychiatrically disturbed children: Prevalence and language and behavioral characteristics. Journal of the American Academy of Child & Adolescent Psychiatry, 32(3), 595-603. doi: 10.1097/00004583-199305000-00016

Cope, N., Harold, D., Hill, G., Moskvina, V., Stevenson, J., Holmans, P., ... Williams, J. (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. The American Journal of Human Genetics, 76(4), 581-591. doi: 10.1086/429131

Eising, E., Carrion-Castillo, A., Vino, A., Strand, E. A., Jakielski, K. J., Scerri, T. S., ... Fisher, S. E. (2019). A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Molecular Psychiatry, 24(7), 1065-1078. doi: 10.1038/s41380-018-0020-x

Enard, W., Przeworski, M., Fisher, S. E., Lai, C. S., Wiebe, V., Kitano, T., ... Pääbo, S. (2002). Molecular evolution of FOXP2, a gene involved in speech and language. Nature, 418(6900), 869-872. doi: 10.1038/nature01025

Estruch, S. B., Graham, S. A., Chinnappa, S. M., Deriziotis, P., & Fisher, S. E. (2016). Functional characterization of rare FOXP2 variants in neurodevelopmental disorder. Journal of Neurodevelopmental Disorders, 8(1), 44. doi: 10.1186/s11689-016-9177-2

Fenollar-Cortés, J., Gallego-Martínez, A., & Fuentes, L. J. (2017). The role of inattention and hyperactivity/impulsivity in the fine motor coordination in children with ADHD. Research in Developmental Disabilities, 69, 77-84. doi: 10.1016/j.ridd.2017.08.003

Ferland, R. J., Cherry, T. J., Preware, P. O., Morrisey, E. E., & Walsh, C. A. (2003). Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain. Journal of Comparative Neurology, 460(2), 266-279. doi: 10.1002/cne.10654

Feuk, L., Kalervo, A., Lipsanen-Nyman, M., Skaug, J., Nakabayashi, K., Finucane, B., ... Hannula-Jouppi, K. (2006). Absence of a paternally inherited FOXP2 gene in developmental verbal dyspraxia. The American Journal of Human Genetics, 79(5), 965-972. doi: 10.1086/508902

Fisher, S. E., & Marcus, G. F. (2006). The eloquent ape: Genes, brains and the evolution of language. Nature Reviews Genetics, 7(1), 9-20. doi: 10.1038/nrg1747

Fisher, S. E., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25(4), 166-177. doi: 10.1016/j.tig.2009.03.002

FOXP2 protein [Homo sapiens] - Protein - NCBI. (n.d.). Retrieved from https://www.ncbi.nlm.nih.gov/protein/AAI43868.1

Friederici, A. D., & Chomsky, N. (2017). The Functional Language Network. In Language in Our Brain. MIT Press Sholarship Online. doi: 10.7551/mitpress/9780262036924.003.0005

Gao, R., Zaccard, C. R., Shapiro, L. P., Dionisio, L. E., Martin-de-Saavedra, M. D., Piguel, N. H., ... Penzes, P. (2019). The CNTNAP2-CASK complex modulates GluA1 subcellular distribution in interneurons. Neuroscience Letters, 701, 92-99. doi: 10.1016/j.neulet.2019.02.025

GeneCards®: The Human Gene Database. (1997). Retrieved from https://www.genecards.org/

Giddan, J. J., Milling, L., & Campbell, N. B. (1996). Unrecognized language and speech deficits in preadolescent psychiatric inpatients. American Journal of Orthopsychiatry, 66(1), 85-92. doi: 10.1037/h0080158

Graham, S. A., & Fisher, S. E. (2015). Understanding language from a genomic perspective. Annual Review of Genetics, 49(1), 131-160. doi: 10.1146/annurev-genet-120213-092236

Gregory S. G., Connelly J. J., Towers A. J., Johnson J., Biscocho D., Markunas C. A., ... Langford, C. F. (2009). Genomic and epigenetic evidence for oxytocin receptor deficiency in autism. BMC Medicine, 7(1), 62. doi: 10.1186/1741-7015-7-62

Hannenhalli, S., & Kaestner, K. H. (2009). The evolution of Fox genes and their role in development and disease. Nature Reviews Genetics, 10(4), 233-240. doi: 10.1038/nrg2523

Hannula-Jouppi, K., Kaminen-Ahola, N., Taipale, M., Eklund, R., Nopola-Hemmi, J., Kääriäinen, H., & Kere, J. (2005). The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genetics, 1(4), 50. doi: 10.1371/journal.pgen.0010050

Holland, S. K., Plante, E., Byars, A. W., Strawsburg, R. H., Schmithorst, V. J., & Ball Jr, W. S. (2001). Normal fMRI brain activation patterns in children performing a verb generation task. NeuroImage, 14(4), 837-843. doi: 10.1006/nimg.2001.0875

Hoogman, M., Guadalupe, T., Zwiers, M. P., Klarenbeek, P., Francks, C., & Fisher, S. E. (2014). Assessing the effects of common variation in the FOXP2 gene on human brain structure. Frontiers in Human Neuroscience, 8, 473. doi: 10.3389/fnhum.2014.00473

Instituto Nacional de Estadística, Geografía e Informática, INEGI. (2000). XII Censo General de Población y Vivienda 2000. Retrieved from https://www.inegi.org.mx/programas/ccpv/2000/

Instituto Nacional de Estadística, Geografía e Informática, INEGI. (2004). Características de las personas con discapacidad del lenguaje. Retrieved from http://www.beta.inegi.org.mx/app/biblioteca/ficha.html?upc=702825010044

Iverson, J. M., & Braddock, B. A. (2011). Gesture and motor skill in relation to language in children with language impairment. Journal of Speech, Language, and Hearing Research, 54(1), 72-86. doi: 10.1044/1092-4388(2010/08-0197)

Ivorra, J. L., Rivero, O., Costas, J., Iniesta, R., Arrojo, M., Ramos-Ríos, R., ... Sanjuán, J. (2014). Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case–control sample from Spain. Schizophrenia Research, 159(1), 107-113. doi: 10.1016/j.schres.2014.07.004

Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845-858. doi: 10.1038/nprot.2015.053

Kemmerer, D., & Gonzalez-Castillo, J. (2010). The two-level theory of verb meaning: An approach to integrating the semantics of action with the mirror neuron system. Brain and Language, 112(1), 54-76. doi: 10.1016/j.bandl.2008.09.010

Khanzada, N., Butler, M., & Manzardo, A. (2017). GeneAnalytics pathway analysis and genetic overlap among autism spectrum disorder, bipolar disorder and schizophrenia. International Journal of Molecular Sciences, 18(3), 527. doi: 10.3390/ijms18030527

Kim, Y. S., & State, M. W. (2014). Recent challenges to the psychiatric diagnostic nosology: A focus on the genetics and genomics of neurodevelopmental disorders. International Journal of Epidemiology, 43(2), 465-475. doi: 10.1093/ije/dyu037

Konopka, G., Bomar, J. M., Winden, K., Coppola, G., Jonsson, Z. O., Gao, F., ... Geschwind, D. H. (2009). Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature, 462(7270), 213-217. doi: 10.1038/nature08549

Krishnan, S., Watkins, K. E., & Bishop, D. V. (2016). Neurobiological basis of language learning difficulties. Trends in Cognitive Sciences, 20(9), 701-714. doi: 10.1016/j.tics.2016.06.012

Lai, C. S., Fisher, S. E., Hurst, J. A., Levy, E. R., Hodgson, S., Fox, M., ... Monaco, A. P. (2000). The SPCH1 region on human 7q31: genomic characterization of the critical interval and localization of translocations associated with speech and language disorder. The American Journal of Human Genetics, 67(2), 357-368. doi: 10.1086/303011

Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F., & Monaco, A. P. (2001). A forkhead-domain gene is mutated in a severe speech and language disorder. Nature, 413(6855), 519-523. doi: 10.1038/35097076

Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E., & Copp, A. J. (2003). FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain, 126(11), 2455-2462. doi: 10.1093/brain/awg247

Li, S., Morley, M., Lu, M., Zhou, S., Stewart, K., French, C. A., ... Morrisey, E. E. (2016). Foxp transcription factors suppress a non-pulmonary gene expression program to permit proper lung development. Developmental Biology, 416(2), 338-346. doi: 10.1016/j.ydbio.2016.06.020

Li, S., Weidenfeld, J., & Morrisey, E. E. (2004). Transcriptional and DNA binding activity of the Foxp1/2/4 family is modulated by heterotypic and homotypic protein interactions. Molecular and Cellular Biology, 24(2), 809-822. doi: 10.1128/mcb.24.2.809-822.2004

Lieberman, P. (2015). Chapter 36 Evolution of Language. In Muehlenbein, M. P. (Ed). Basics in Human Evolution, (pp. 493-503). doi: 10.1016/b978-0-12-802652-6.00036-0

Liska, A., Bertero, A., Gomolka, R., Sabbioni, M., Galbusera, A., Barsotti, N., ... Gozzi, A. (2017). Homozygous loss of autism-risk gene CNTNAP2 results in reduced local and long-range prefrontal functional connectivity. Cerebral Cortex, 28(4), 1141-1153. doi: 10.1093/cercor/bhx022

Mattos, P., Rabelo, B., Gueiros, F., Soares, T., & Coutinho, G. (2009). Specific language impairment in an adult with type I bipolar disorder: A case report. Revista Brasileira de Psiquiatria, 31(2), 191-192. doi: 10.1590/s1516-44462009000200023

Mccarthy, N. S., Clark, M. L., Jablensky, A., & Badcock, J. C. (2019). No association between common genetic variation in FOXP2 and language impairment in schizophrenia. Psychiatry Research, 271, 590-597. doi: 10.1016/j.psychres.2018.12.016

McKusick, V. A. (1997, 27 octubre). OMIM Entry - # 602081 - SPEECH-LANGUAGE DISORDER 1; SPCH1. Retrieved from https://omim.org/entry/602081

Meerschaut, I., Rochefort, D., Revençu, N., Pètre, J., Corsello, C., Rouleau, G. A., ... Callewaert, B. (2017). FOXP1-related intellectual disability syndrome: A recognisable entity. Journal of Medical Genetics, 54(9), 613-623. doi: 10.1136/jmedgenet-2017-104579

Mendoza, E., & Scharff, C. (2017). Protein-Protein interaction among the FoxP family members and their regulation of two target genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Frontiers in Molecular Neuroscience, 10, 112. doi: 10.3389/fnmol.2017.00112

Meng, H., Smith, S. D., Hager, K., Held, M., Liu, J., Olson, R. K., ... Gruen, J. R. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of the National Academy of Sciences, 102(47), 17053-17058. doi: 10.1073/pnas.0508591102

Mizutani, A., Matsuzaki, A., Momoi, M. Y., Fujita, E., Tanabe, Y., & Momoi, T. (2007). Intracellular distribution of a speech/language disorder associated FOXP2 mutant. Biochemical and Biophysical Research Communications, 353(4), 869-874. doi: 10.1016/j.bbrc.2006.12.130

Moreno-Flagge, N. (2013). Trastornos del lenguaje. Diagnóstico y tratamiento. Revista de Neurología, 57(Supl 1), 85-94. doi: 10.33588/rn.57s01.2013248

Morgan, A., Fisher, S. E., Scheffer, I., & Hildebrand, M. (2017). FOXP2-related speech and language disorders. In GeneReviews®[internet]. Seattle WA: University of Washington, Seattle. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27336128

Morris, G., Stoychev, S., Naicker, P., Dirr, H. W., & Fanucchi, S. (2018). The forkhead domain hinge-loop plays a pivotal role in DNA binding and transcriptional activity of FOXP2. Biological Chemistry, 399(8), 881-893. doi: 10.1515/hsz-2018-0185

National Center for Biotechnology Information, U.S. National Library of Medicine. (s.f.). Gene. Retrieved from https://www.ncbi.nlm.nih.gov/gene

National Center for Biotechnology Information. (s.f.). Online Mendelian Inheritance in Man (OMIM). Recuperado de https://www.ncbi.nlm.nih.gov/omim/

National Institutes of Health, The European Molecular Biology Laboratory, & State Secretariat for Education, Research and Innovation SERI. (2002). Universal Protein Resource (UniProt). Retrieved from https://www.uniprot.org/

Newbury, D. F., Paracchini, S., Scerri, T. S., Winchester, L., Addis, L., Richardson, A. J., ... Monaco, A. P. (2011). Investigation of dyslexia and SLI risk variants in reading-and language-impaired subjects. Behavior Genetics, 41(1), 90-104. doi: 10.1007/s10519-010-9424-3

Newbury, D. F., Winchester, L., Addis, L., Paracchini, S., Buckingham, L., Clark, A., ... Monaco, A. P. (2009). CMIP and ATP2C2 modulate phonological short-term memory in language impairment. The American Journal of Human Genetics, 85(2), 264-272. doi: 10.1016/j.ajhg.2009.07.004

Nudel, R., & Newbury, D. F. (2013). Foxp2. Wiley Interdisciplinary Reviews: Cognitive Science, 4(5), 547-560. doi: 10.1002/wcs.1247

Ocklenburg, S., Arning, L., Gerding, W. M., Epplen, J. T., Güntürkün, O., & Beste, C. (2013). FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain and Language, 126(3), 279-284. doi: 10.1016/j.bandl.2013.07.001

OMIM. (s.f.). Online Mendelian Inheritance in Man (OMIM). Retrieved from https://www.ncbi.nlm.nih.gov/omim/

Oswald, F., Klöble, P., Ruland, A., Rosenkranz, D., Hinz, B., Butter, F., ... Herlyn, H. (2017). The FOXP2-Driven Network in Developmental Disorders and Neurodegeneration. Frontiers in Cellular Neuroscience, 11, 212. doi: 10.3389/fncel.2017.00212

Peñagarikano, O., & Geschwind, D. H. (2012). What does CNTNAP2 reveal about autism spectrum disorder?. Trends in Molecular Medicine, 18(3), 156-163. doi: 10.1016/j.molmed.2012.01.003

Peñagarikano, O., Lázaro, M. T., Lu, X., Gordon, A., Dong, H., Lam, H. A., ... Geschwind, D. H. (2015). Exogenous and evoked oxytocin restores social behavior in the Cntnap2 mouse model of autism. Science Translational Medicine, 7(271), 271ra8. doi: 10.1126/scitranslmed.3010257

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. doi: 10.1002/jcc.20084

Plump, A. S., Erskine, L., Sabatier, C., Brose, K., Epstein, C. J., Goodman, C. S., ... Tessier-Lavigne, M. (2002). Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron, 33(2), 219-232. doi: 10.1016/s0896-6273(01)00586-4

Puglia, M. H., Lillard T. S., Morris J. P., & Connelly J. J. (2015). Epigenetic modification of the oxytocin receptor gene influences the perception of anger and fear in the human brain. Proceedings of the National Academy of Sciences, 112(11), 3308-3313. doi: 10.1073/pnas.1422096112

Radanovic, M., Nunes, P. V., Gattaz, W. F., & Forlenza, O. V. (2008). Language impairment in euthymic, elderly patients with bipolar disorder but no dementia. International Psychogeriatrics, 20(4), 687-696. doi: 10.1017/s1041610208007084

Raza, M. H., Domingues, C. E., Webster, R., Sainz, E., Paris, E., Rahn, R., ... Drayna, D. (2016). Mucolipidosis types II and III and non-syndromic stuttering are associated with different variants in the same genes. European Journal of Human Genetics, 24(4), 529-534. doi: 10.1038/ejhg.2015.154

Roll, P., Rudolf, G., Pereira, S., Royer, B., Scheffer, I. E., Massacrier, A., ... Szepetowski, P. (2006). SRPX2 mutations in disorders of language cortex and cognition. Human Molecular Genetics, 15(7), 1195-1207. doi: 10.1093/hmg/ddl035

Roll, P., Vernes, S. C., Bruneau, N., Cillario, J., Ponsole-Lenfant, M., Massacrier, A., ... Szepetowski, P. (2010). Molecular networks implicated in speech-related disorders: FOXP2 regulates the SRPX2/uPAR complex. Human Molecular Genetics, 19(24), 4848-4860. doi: 10.1093/hmg/ddq415

Royer-Zemmour, B., Ponsole-Lenfant, M., Gara, H., Roll, P., Lévêque, C., Massacrier, A., ... Szepetowski, P. (2008). Epileptic and developmental disorders of the speech cortex: Ligand/receptor interaction of wild-type and mutant SRPX2 with the plasminogen activator receptor uPAR. Human Molecular Genetics, 17(23), 3617-3630. doi: 10.1093/hmg/ddn256

Sanjuán, J., Tolosa, A., González, J. C., Aguilar, E. J., Pérez-Tur, J., Nájera, C., ... de Frutos, R. (2006). Association between FOXP2 polymorphisms and schizophrenia with auditory hallucinations. Psychiatric Genetics, 16(2), 67-72. doi: 10.1097/01.ypg.0000185029.35558.bb

Schomers, M. R., & Pulvermüller, F. (2016). Is the sensorimotor cortex relevant for speech perception and understanding? An integrative review. Frontiers in Human Neuroscience, 10, 435. doi: 10.3389/fnhum.2016.00435

Sciberras, E., Mueller, K. L., Efron, D., Bisset, M., Anderson, V., Schilpzand, E. J., ... Nicholson, J. M. (2014). Language problems in children with ADHD: A community-based study. Pediatrics, 133(5), 793-800. doi: 10.1542/peds.2013-3355

Shu, W., Cho, J. Y., Jiang, Y., Zhang, M., Weisz, D., Elder, G. A., ... Buxbaum, J. D. (2005). Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proceedings of the National Academy of Sciences, 102(27), 9643-9648. doi: 10.1073/pnas.0503739102

Shu, W., Yang, H., Zhang, L., Lu, M. M., & Morrisey, E. E. (2001). Characterization of a new subfamily of winged-helix/forkhead (Fox) genes that are expressed in the lung and act as transcriptional repressors. Journal of Biological Chemistry, 276(29), 27488-27497. doi: 10.1074/jbc.m100636200

Song, X., Tang, Y., & Wang, Y. (2016). Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events. Gene, 588(2), 156-162. doi: 10.1016/j.gene.2016.05.019

Španiel, F., Horáček, J., Tintěra, J., Ibrahim, I., Novák, T., Čermák, J., ... Höschl, C. (2011,). Genetic variation in FOXP2 alters grey matter concentrations in schizophrenia patients. Neuroscience Letters, 493(3), 131-135. doi: 10.1016/j.neulet.2011.02.024

Spiteri, E., Konopka, G., Coppola, G., Bomar, J., Oldham, M., Ou, J., ... Geschwind, D. H. (2007). Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. The American Journal of Human Genetics, 81(6), 1144-1157. doi: 10.1086/522237

Stroud, J. C., Wu, Y., Bates, D. L., Han, A., Nowick, K., Paabo, S., ... Chen, L. (2006). Structure of the forkhead domain of FOXP2 bound to DNA. Structure, 14(1), 159-166. doi: 10.1016/j.str.2005.10.005

Sutcubasi Kaya, B., Metin, B., Tas, Z. C., Buyukaslan, A., Soysal, A., Hatiloglu, D., & Tarhan, N. (2018). Gray matter increase in motor cortex in pediatric ADHD: A voxel-based morphometry study. Journal of Attention Disorders, 22(7), 611-618. doi: 10.1177/1087054716659139

Teramitsu, I., Kudo, L. C., London, S. E., Geschwind, D. H., & White, S. A. (2004). Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. Journal of Neuroscience, 24(13), 3152-3163. doi: 10.1523/JNEUROSCI.5589-03.2004

Theofanopoulou, C. (2016). Implications of oxytocin in human linguistic cognition: from genome to phenome. Frontiers in Neuroscience, 10, 271. doi: 10.3389/fnins.2016.00271

Thomas, A. C., Frost, J. M., Ishida, M., Vargha-Khadem, F., Moore, G. E., & Stanier, P. (2012). The speech gene FOXP2 is not imprinted. Journal of Medical Genetics, 49(11), 669-670. doi: 10.1136/jmedgenet-2012-101242

Thordardottir, E. T., & Weismer, S. E. (2002). Verb argument structure weakness in specific language impairment in relation to age and utterance length. Clinical Linguistics & Phonetics, 16(4), 233-250. doi: 10.1080/02699200110116462

Toma, C., Pierce, K. D., Shaw, A. D., Heath, A., Mitchell, P. B., Schofield, P. R., & Fullerton, J. M. (2018). Comprehensive cross-disorder analyses of CNTNAP2 suggest it is unlikely to be a primary risk gene for psychiatric disorders. PLOS Genetics, 14(12), e1007535. doi: 10.1371/journal.pgen.1007535

Trautman, R. C., Giddan, J. J., & Jurs, S. G. (1990). Language risk factor in emotionally disturbed children within a school and day treatment program. Journal of Childhool Communication Disorders, 13(2), 123-133. doi: 10.1177/152574019001300201

Trevisan, P., Sedeño, L., Birba, A., Ibáñez, A., & García, A. M. (2017). A moving story: Whole-body motor training selectively improves the appraisal of action meanings in naturalistic narratives. Scientific Reports, 7(1), 12538. doi: 10.1038/s41598-017-12928-w

U.S. Department of Health & Human Services. (s.f.). Genetics Home Reference. Retrieved from https://ghr.nlm.nih.gov/

Vargha-Khadem, F., Watkins, K., Alcock, K., Fletcher, P., & Passingham, R. (1995). Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proceedings of the National Academy of Sciences, 92(3), 930-933. doi: 10.1073/pnas.92.3.930

Vernes, S. C., Newbury, D. F., Abrahams, B. S., Winchester, L., Nicod, J., Groszer, M., ... Fisher, S. E. (2008). A functional genetic link between distinct developmental language disorders. New England Journal of Medicine, 359(22), 2337-2345. doi: 10.1056/NEJMoa0802828

Vernes, S. C., Nicod, J., Elahi, F. M., Coventry, J. A., Kenny, N., Coupe, A., ... Fisher, S. E. (2006). Functional genetic analysis of mutations implicated in a human speech and language disorder. Human Molecular Genetics, 15(21), 3154-3167. doi: 10.1093/hmg/ddl392

Vernes, S. C., Spiteri, E., Nicod, J., Groszer, M., Taylor, J. M., Davies, K. E., ... Fisher, S. E. (2007). High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. The American Journal of Human Genetics, 81(6), 1232-1250. doi: 10.1086/522238

Wang, H. G., Jeffries, J. J., & Wang, T. F. (2016). Genetic and developmental perspective of language abnormality in autism and schizophrenia: one disease occurring at different ages in humans?. The Neuroscientist, 22(2), 119-131. doi: 10.1177/1073858415572078

Wang, R., Chen, C. C., Hara, E., Rivas, M. V., Roulhac, P. L., Howard, J. T., ... Jarvis, E. D. (2015). Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners. Journal of Comparative Neurology, 523(6), 892-906. doi: 10.1002/cne.23719

Watkins, K. E., Vargha-Khadem, F., Ashburner, J., Passingham, R. E., Connelly, A., Friston, K. J., ... Gadian, D. G. (2002). MRI analysis of an inherited speech and language disorder: Structural brain abnormalities. Brain, 125(3), 465-478. doi: 10.1093/brain/awf057

Weigel, D., Jürgens, G., Küttner, F., Seifert, E., & Jäckle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell, 57(4), 645-658. doi: 10.1016/0092-8674(89)90133-5

Whitehouse, A. J., Bishop, D. V., Ang, Q. W., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10(4), 451-456. doi: 10.1111/j.1601-183X.2011.00684.x

Xu, S., Liu, P., Chen, Y., Chen, Y., Zhang, W., Zhao, H., ... Guo, X. (2018). Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proceedings of the National Academy of Sciences, 115(35), 8799-8804. doi: 10.1073/pnas.1721820115

Yang, J. (2014). Influences of motor contexts on the semantic processing of action-related language. Cognitive, Affective, & Behavioral Neuroscience, 14(3), 912-922. doi: 10.3758/s13415-014-0258-y

Zhou, W., Zhang, J., Li, Z., Lin, X., Li, J., Wang, S., ... Wei, L. (2019). Targeted resequencing of 358 candidate genes for autism spectrum disorder in a Chinese cohort reveals diagnostic potential and genotype–phenotype correlations. Human Mutation, 40(6), 801-815. doi: 10.1002/humu.23724